2521/105 2602/106 2601/106 2603/106

ELECTRICAL MEASUREMENT AND ANALOGUE ELECTRONICS

June/July 2016 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (INSTRUMENTATION OPTION) (TELECOMMUNICATION OPTION) (POWER OPTION)

MODULE I

ELECTRICAL MEASUREMENT AND ANALOGUE ELECTRONICS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Drawing instruments:

Non-programmable electronie calculator;

Mathematical tables.

This paper consists EIGHT questions into TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

p.J

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

6,0/016

110x 50

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2016 The Kenya National Examinations Council

Turn over

SECTION A: ELECTRICAL MEASUREMENTS

Answer any THREE questions in this section.

	(a)	Define	the following system	0)6 of units a	is applied in	measuremen	ts:	4UG []]	
		(i) (ii)	absolute unit; derived unit.				4	(2 marks)	
		(11)	derived tilit.				2	(2 marks)	
	(b)	Derive of unit	the dimensions of the		***		π.		
		(i) (ii)	charge (Q); current (I).		Q= I+1	ani)	87	(8 marks)	
	(c)	State 1	our advantages of the					8.	r')
						1-14-	+	(4 marks)	
	(d)	Using	the LMTI system of un				ons for:		
	8	(i) (ii)	EMF; = Cook Charge magnetic flux density	fex	yourses -	I - BU	Color	(6 marks)	
	(a) -		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			21 I It	ent.	mail Pt	
		(i) (ii)	environmental errors instrumental errors;	-got to b	v to the for	ic of the inst	unyar		
		(iii)	gross errors: - Privat	dur to	Invitary AM	Steike		6	
		(iv)	residue errors mos	s dut t	e the leak	a cleaning		(8 marks)	15
	(b)	State 1	hree detectors and their	r operatio		cies as commo	only used for a	(6 marks)	
	(c)		n how the following f	actors aff	ect precisio	I measureme:	nt of medium	resistance	
		with	heatstone bridge:		**				
		(1)	temperature effects;						
		(ii)	contact resistance;				No.		
		(111)	thermo-electric effec	ts.		lagi	Cha	(6 marks)	
3.	(a)	State	three causes of faults	on a print	ed circuit be			(3 marks)	Los
	(β)	Sudo	ve tools used in the re	pair and i	naintenance	of electronic	equipment.	(5 marks)	
	(c)	r.xpii		ce engine on and only	eer should co	onsider when	fault finding o	on (6 marks)	
	(d)	Outli	ne three operational of	ojectives	and three co	ost objectives	of good mair	ntenance. (6 marks)	
2521		2602/							
2601. June/S	/ 106 July 2016	2603/	06		2			4	ac of

newsspot.co.ke

Describe the term 'reliability' as applied in electrical measurements. this the ability of a merching to profom operational tasks

Explain the importance of the following in relation to reliability:

- mean time between failures; Time when the muchine will single the work. (i)
- (ii) mean time to failure; - To Sorva The purpose between in perand if
- availability. The availability & a (iii)
- (c) Table 1 shows the performance of ten pressure monitors, observed while operating for a period of 1200 hours. Every failed unit is replaced immediately. Determine the:
 - MTBF; (i)
 - (ii) failure rate

(10 marks)

Table 1

Unit Number	Time of Failure (hours)	Failure
1	650	1
2.	420	1
3	· 130 and 725	2
4	585	1
5	630 and 950	2
6	390	I
7	No failure	0
8	888	
9	No failure	0
10	220 and 675	2

State three reasons for the inaccuracies encountered in magnetic measurements, (a)

(3 marks)

(b) Outline six methods of fault location in electronic systems. (6 marks)

- (c) Explain the following wattmeter errors:
 - eddy current errors; (1)
 - stray magnetic field errors. (ii)

(6 marks)

Draw a labelled construction diagram of Hibberts magnetic standard used in magnetic (d) (5 marks) measurements.

2521/105 2602/106 2601/106 2603/106 June/July 2016

Turn over

SECTION B: ANALOGUE ELECTRONICS

Answer any TWO questions from this section.

1.2

12.54

- Explain how the following extrinsic semi-conductors are formed. (a)
 - N-type; -forme by admy particulars every. P-type. formed by adding townships where. (i)
 - (11)

(4 marks)

- ominer Died State three applications of semi-conductor diodes (b) (i)
 - With aid of voltage-current characteristics, describe the avalanche breakdown (11) (10 marks) in a P-N junction diode.

A silicon diode has a forward voltage drop of 1.5V and a forward d.c. current of 150 mA. It has a reverse current of 1.2 μ A and a reverse voltage of 12 V. $N_1 = \forall b + 1$ R = V= 1R R - Y 15 150MA Determine for the diode the:

- forward resistance; 🏠
- (11) reverse resistance. V

(6 marks)

- Draw equivalent two source biaising circuits using the transistor symbol for the following:
 - (i) PNP transistor;
 - NPN transistor

(4 marks)

- (b) Figure 1 shows an amplifier of
 - Determine the d.c. operating point. a point

Fig. 1

Sketch the d.c. loadline.

NB: neglect V BE

(12 marks)

Position

- (c) State **tw**o advantages and **two** disadvantages of field effect transistors over bipolarmove Water junction transistors. (4 marks
- (a) State three advantages of bridge rectifier over bi-phase rectifier. (3 marks
- (b) With aid of circuit diagram and voltage waveforms, describe the operation of a single phase half wave rectifier feeding a purely resistive load.
 - (ii) Derive the expression for the output d.c. current for the rectifier in b(i). (11 marks
- (c) Figure 2 shows a zener diode stabilizer. Determine the output voltage with no load current. (6 mark

THIS IS THE LAST PRINTED PAGE.

acce

2521/105 2602/106 2601/106 2603/106

June/July 2016

12.5

1.7 ×103

8.

5