2521/105 2602/106 2601/106 2603/106 ELECTRICAL MEASUREMENT AND ANALOGUE ELECTRONICS June/July 2016 Time: 3 hours #### THE KENYA NATIONAL EXAMINATIONS COUNCIL # DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (INSTRUMENTATION OPTION) (TELECOMMUNICATION OPTION) (POWER OPTION) ## MODULE I ELECTRICAL MEASUREMENT AND ANALOGUE ELECTRONICS #### 3 hours #### INSTRUCTIONS TO CANDIDATES You should have the following for this examination: Drawing instruments: Non-programmable electronie calculator; Mathematical tables. This paper consists EIGHT questions into TWO sections; A and B. Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided. All questions carry equal marks. p.J Maximum marks for each part of a question are as shown. Candidates should answer the questions in English. 6,0/016 110x 50 This paper consists of 5 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. © 2016 The Kenya National Examinations Council Turn over # SECTION A: ELECTRICAL MEASUREMENTS Answer any THREE questions in this section. | | (a) | Define | the following system | 0)6
of units a | is applied in | measuremen | ts: | 4UG []] | | |-----------------|---------------------------|-------------------|--|-----------------------------|---------------|----------------|-----------------|------------------------|-------| | | | (i)
(ii) | absolute unit;
derived unit. | | | | 4 | (2 marks) | | | | | (11) | derived tilit. | | | | 2 | (2 marks) | | | | (b) | Derive
of unit | the dimensions of the | | *** | | π. | | | | | | (i)
(ii) | charge (Q);
current (I). | | Q= I+1 | ani) | 87 | (8 marks) | | | | (c) | State 1 | our advantages of the | | | | | 8. | r') | | | | | | | | 1-14- | + | (4 marks) | | | | (d) | Using | the LMTI system of un | | | | ons for: | | | | | 8 | (i)
(ii) | EMF; = Cook Charge magnetic flux density | fex | yourses - | I - BU | Color | (6 marks) | | | | (a) - | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | 21 I It | ent. | mail Pt | | | | | (i)
(ii) | environmental errors
instrumental errors; | -got to b | v to the for | ic of the inst | unyar | | | | | | (iii) | gross errors: - Privat | dur to | Invitary AM | Steike | | 6 | | | | | (iv) | residue errors mos | s dut t | e the leak | a cleaning | | (8 marks) | 15 | | | (b) | State 1 | hree detectors and their | r operatio | | cies as commo | only used for a | (6 marks) | | | | (c) | | n how the following f | actors aff | ect precisio | I measureme: | nt of medium | resistance | | | | | with | heatstone bridge: | | ** | | | | | | | | (1) | temperature effects; | | | | | | | | | | (ii) | contact resistance; | | | | No. | | | | | | (111) | thermo-electric effec | ts. | | lagi | Cha | (6 marks) | | | 3. | (a) | State | three causes of faults | on a print | ed circuit be | | | (3 marks) | Los | | | (β) | Sudo | ve tools used in the re | pair and i | naintenance | of electronic | equipment. | (5 marks) | | | | (c) | r.xpii | | ce engine
on and
only | eer should co | onsider when | fault finding o | on
(6 marks) | | | | (d) | Outli | ne three operational of | ojectives | and three co | ost objectives | of good mair | ntenance.
(6 marks) | | | 2521 | | 2602/ | | | | | | | | | 2601.
June/S | / 106
July 2016 | 2603/ | 06 | | 2 | | | 4 | ac of | newsspot.co.ke Describe the term 'reliability' as applied in electrical measurements. this the ability of a merching to profom operational tasks Explain the importance of the following in relation to reliability: - mean time between failures; Time when the muchine will single the work. (i) - (ii) mean time to failure; - To Sorva The purpose between in perand if - availability. The availability & a (iii) - (c) Table 1 shows the performance of ten pressure monitors, observed while operating for a period of 1200 hours. Every failed unit is replaced immediately. Determine the: - MTBF; (i) - (ii) failure rate (10 marks) Table 1 | Unit Number | Time of Failure
(hours) | Failure | |-------------|----------------------------|---------| | 1 | 650 | 1 | | 2. | 420 | 1 | | 3 | · 130 and 725 | 2 | | 4 | 585 | 1 | | 5 | 630 and 950 | 2 | | 6 | 390 | I | | 7 | No failure | 0 | | 8 | 888 | | | 9 | No failure | 0 | | 10 | 220 and 675 | 2 | State three reasons for the inaccuracies encountered in magnetic measurements, (a) (3 marks) (b) Outline six methods of fault location in electronic systems. (6 marks) - (c) Explain the following wattmeter errors: - eddy current errors; (1) - stray magnetic field errors. (ii) (6 marks) Draw a labelled construction diagram of Hibberts magnetic standard used in magnetic (d) (5 marks) measurements. 2521/105 2602/106 2601/106 2603/106 June/July 2016 Turn over ### SECTION B: ANALOGUE ELECTRONICS Answer any TWO questions from this section. 1.2 12.54 - Explain how the following extrinsic semi-conductors are formed. (a) - N-type; -forme by admy particulars every. P-type. formed by adding townships where. (i) - (11) (4 marks) - ominer Died State three applications of semi-conductor diodes (b) (i) - With aid of voltage-current characteristics, describe the avalanche breakdown (11) (10 marks) in a P-N junction diode. A silicon diode has a forward voltage drop of 1.5V and a forward d.c. current of 150 mA. It has a reverse current of 1.2 μ A and a reverse voltage of 12 V. $N_1 = \forall b + 1$ R = V= 1R R - Y 15 150MA Determine for the diode the: - forward resistance; 🏠 - (11) reverse resistance. V (6 marks) - Draw equivalent two source biaising circuits using the transistor symbol for the following: - (i) PNP transistor; - NPN transistor (4 marks) - (b) Figure 1 shows an amplifier of - Determine the d.c. operating point. a point Fig. 1 Sketch the d.c. loadline. NB: neglect V BE (12 marks) Position - (c) State **tw**o advantages and **two** disadvantages of field effect transistors over bipolarmove Water junction transistors. (4 marks - (a) State three advantages of bridge rectifier over bi-phase rectifier. (3 marks - (b) With aid of circuit diagram and voltage waveforms, describe the operation of a single phase half wave rectifier feeding a purely resistive load. - (ii) Derive the expression for the output d.c. current for the rectifier in b(i). (11 marks - (c) Figure 2 shows a zener diode stabilizer. Determine the output voltage with no load current. (6 mark THIS IS THE LAST PRINTED PAGE. acce 2521/105 2602/106 2601/106 2603/106 June/July 2016 12.5 1.7 ×103 8. 5