2705/202 2709/202 2707/202 2710/202 STRUCTURES II, GEOTECHNOLOGY II AND CONCRETE TECHNOLOGY II June/July 2017 Time: 3 hours





### THE KENYA NATIONAL EXAMINATIONS COUNCIL

# DIPLOMA IN BUILDING TECHNOLOGY DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

### MODULE II

STRUCTURES'II, GEOTECHNOLOGY II AND CONCRETE TECHNOLOGY II

3 hours

#### INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Drawing instruments:

Scientific calculator.

This paper consists of EIGHT questions in THREE sections: A, B and C.

Answer FIVE questions choosing TWO questions from section A, TWO questions from section B and ONE question from section C.

All questions carry equal marks.

Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2017 The Kenya National Examinations Council.

Turn over

## SECTION A: STRUCTURES II

Answer TWO questions in this section.

Figure 1 is a simply supported beam carrying a point load as shown: 1. (a)



Figure 1

From Mohr's principles, prove that:

- maximum slope of the beam =  $\theta_{max} = \frac{-WL^2}{16EL}$ (i)
- maximum deflection of the beam,  $y_{max} = \frac{-WL^3}{48EI}$ . (ii)

Where E = modulus of elasticity; I = moment of inertia.



(16 marks)

- A simply supported beam of span 3 m is subjected to a central point load of 10 kN. (b) By using Q 1 (a) above, determine:
  - the maximum slope of the beam; (i)
  - the maximum deflection of the beam. (ii)

Take I = 12 x 106 mm4  $E = 200 \times 10^3 \text{ N/mm}^2$ .

(4 marks)

Differentiate between active earth pressure and passive earth pressure. 2. (a)

(4 marks)

The mense

2705/202 2709/202 2707/202 2710/202 June/July 2017

(b) Figure 2 shows a masonry retaining wall supporting two layers of soils.



Figure 2

Determine:

(i) the resultant lateral force on the wall;

(ii) the distance of the point of application from the bottom of the wall.

(16 marks)

A 150 mm thick reinforced concrete slab simply supported on 200 mm thick walls has
effective spans of 6.6 m x 3.0 m. Use the data provided below to design for bending only
and hence sketch the slab showing reinforcement details.

| Data                                   |                      |                                           | Looping -dead wood = 1 XI                                                                     | 24= 3.6               |
|----------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|
| Finis<br>Conc<br>Take:                 | rete density         | 2.6 kN/m²;<br>- 0.4 kN/m²;<br>- 24 kN/m³; | efficience Sport = 6.6mx3.0m                                                                  | 5600=2.2              |
| Conc                                   |                      | 15                                        | 1.4×3.6 + 1.6× 2.6 =<br>3.04 7 415,277 = 912<br>manufer cylix = 6.63.0 = 6                    | (20 marks)            |
| 2705/202<br>2707/202<br>June/July 2017 | 2709/202<br>2710/202 | Michael Michael March                     | 0.05/4 9/2 x3 =<br>5.050/2012 x32 =<br>mu = 0.056 x 20 fe u  2 =<br>0.054 460 x 00 20 mu > mu | 93-0:059<br>Turn over |

## SECTION B: GEOTECHNOLOGY II

Answer TWO questions from this section.

| 4. | (a) | Explain the following terms of the elements of faults:                        |            |  |  |  |
|----|-----|-------------------------------------------------------------------------------|------------|--|--|--|
|    |     | (i) fault;                                                                    |            |  |  |  |
|    |     | (ii) dip.                                                                     | (5 marks)  |  |  |  |
|    | (b) | With the aid of sketches, describe the following types of faults:             |            |  |  |  |
|    |     | (i) normal faults;                                                            | 1          |  |  |  |
|    |     | (ii) reverse faults.                                                          | (12 marks) |  |  |  |
|    | (c) | State the three recognition of faults.                                        | (3 marks)  |  |  |  |
| 5. | (a) | Explain three factors that influence the method of breaking a hard rock.      | (6 marks)  |  |  |  |
|    | (b) | Describe the drilling and blasting method of breaking a hard rock.            | (8 marks)  |  |  |  |
|    | (c) | Explain:                                                                      |            |  |  |  |
|    |     | (i) handling misfire of explosives;                                           |            |  |  |  |
|    |     | (ii) storing explosives.                                                      | (6 marks)  |  |  |  |
| 6. | (a) | Distinguish between inlier and outlier.                                       | (4 marks)  |  |  |  |
|    | (b) | Discuss the term time-scale as used in geology.                               | (4 marks)  |  |  |  |
|    | (c) | Map 3 shows the plan of a geological map.                                     |            |  |  |  |
|    |     | (i) determine the gradient of the beds;                                       |            |  |  |  |
|    |     | (ii) draw a geological section along Y-Z to show the layers A, B, C, D and E; |            |  |  |  |
|    |     | (iii) on the geological section, indicate an inlier and outlier.              | (12 marks) |  |  |  |
|    | 25  |                                                                               |            |  |  |  |
|    | 34  | m2                                                                            |            |  |  |  |
|    |     |                                                                               |            |  |  |  |

2705/202 2707/202 June/July 2017 2709/202 2710/202

100

# MAP3



2705/202 2707/202

2709/202 2710/202

June/July 2017

17 NUS 2017

. . . . . . . . . .

Turn over

#### SECTION C: CONCRETE TECHNOLOGY II

Answer ONE question from this section.

- 7. (a) State four factors that affect the productivity of concreting plants. (4 marks)
  - (b) Describe the following types of concreting plants:
    - (i) trucker mixer;
    - (ii) central mixing plant.

(10 marks)

- (c) State three precautions to be observed when:
  - (i) using a hoist as a lifting appliance;
  - (ii) transporting wet concrete.

(6 marks)

8. (a) State four factors that influence the selection of concreting plant.

(4 marks)

- (b) Determine the quantity of materials required per batch and probable output from a concrete mixing plant of 1200 litres capacity. The design per 1000 litres of mixed concrete is as follows:
  - I 5.6 bags of cement;
  - II 923 kg of coarse aggregates;
  - III 715 kg of sand;
  - IV 195 litres of water;
  - V fixing time = 115 seconds.

(16 marks)

THIS IS THE LAST PRINTED PAGE.

2705/202 2707/202 June/July 2017 2709/202 2710/202

6