2705/202 2709/202 2707/202 2710/202 STRUCTURES II, GEOTI AND CONCRETE TECHN

STRUCTURES II, GEOTECHNOLOGY II AND CONCRETE TECHNOLOGY II

June/July 2017 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING TECHNOLOGY DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

MODULE II

STRUCTURES'II, GEOTECHNOLOGY II AND CONCRETE TECHNOLOGY II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Drawing instruments:

Scientific calculator.

This paper consists of EIGHT questions in THREE sections: A, B and C.

Answer FIVE questions choosing TWO questions from section A, TWO questions from section B and ONE question from section C.

All questions carry equal marks.

Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2017 The Kenya National Examinations Council.

Turn over

SECTION A: STRUCTURES II

Answer TWO questions in this section.

1. (a) Figure 1 is a simply supported beam carrying a point load as shown:

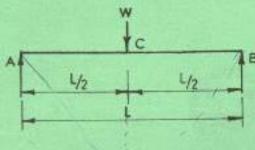


Figure 1

Score = Area of my Bric

From Mohr's principles, prove that:

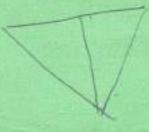
- (i) maximum slope of the beam = $\theta_{max} = \frac{-WL^2}{16EI}$;
- (ii) maximum deflection of the beam, $y_{max} = \frac{-WL^3}{48EI}$.

Where E = modulus of elasticity;

J = moment of inertia.

(16 marks)

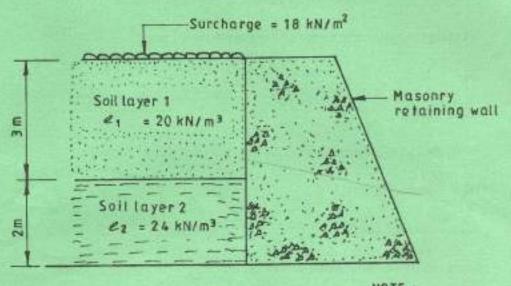
- (b) A simply supported beam of span 3 m is subjected to a central point load of 10 kN. By using Q 1 (a) above, determine:
 - (i) the maximum slope of the beam;
 - (ii) the maximum deflection of the beam.


Take I = $12 \times 10^6 \text{ mm}^4$ E = $200 \times 10^3 \text{ N/mm}^2$.

(4 marks)

2. (a) Differentiate between active earth pressure and passive earth pressure.

(4 marks)



2705/202 2707/202 June/July 2017 2709/202 2710/202 1 x 12 4 20 2 = -

(b) Figure 2 shows a masonry retaining wall supporting two layers or sons.

NOTE:
- Angle of repose
for both soils = 30°

Figure 2

Determine:

- (i) the resultant lateral force on the wall;
- (ii) the distance of the point of application from the bottom of the wall.

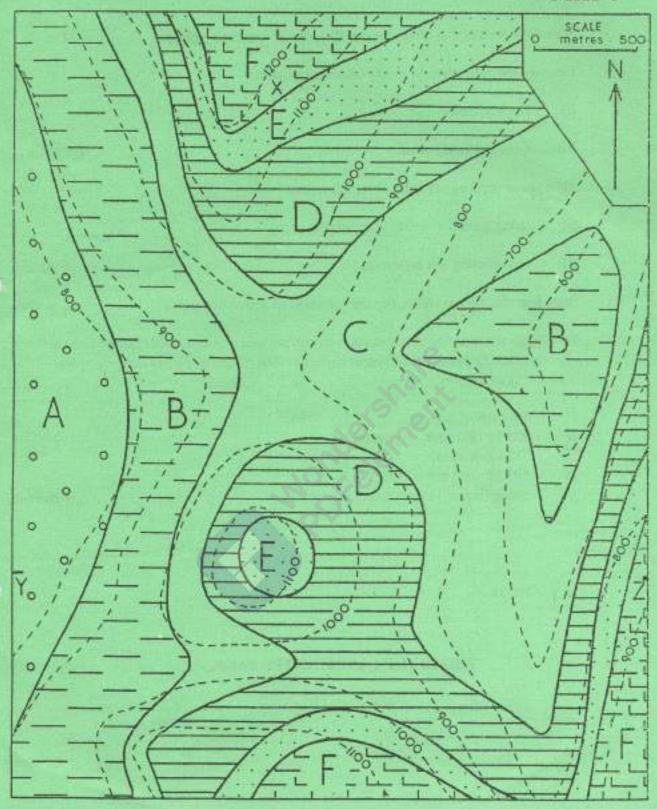
(16 marks)

A 150 mm thick reinforced concrete slab simply supported on 200 mm thick walls has
effective spans of 6.6 m x 3.0 m. Use the data provided below to design for bending only
and hence sketch the slab showing reinforcement details.

	Data		(0001-9 -dead wood = 1 x1 1 1 1 1 1 2 3 6
	Imposed load Finishes Concrete density Take:	- 2.6 kN/m²; - 0.4 kN/m²; - 24 kN/m³;	1.49x + 1169x
	Cover as 15 mm thick Concrete grade C30 fy = 460 N/mm ² .	-15	1.4×3.6 + 1.6× 2.6 = (20 marks) TAUS 279 - 9.2 (20 marks) The same cylin = 6.6 3.0 = 2.2 = 3.00 = 2.3
2705/2 2707/2 June/Jul	02 2710/202	And a comment of the	0-05/14 912 43 - 93-01059

SECTION B: GEOTECHNOLOGY II

Answer TWO questions from this section.


- Explain the following terms of the elements of faults: (a) (i) fault: (5 marks) (ii) dip. With the aid of sketches, describe the following types of faults: (b) (i) normal faults; (12 marks) reverse faults. (ii) (3 marks) State the three recognition of faults. (c) Explain three factors that influence the method of breaking a hard rock. 5. (a) (6 marks) (8 marks) Describe the drilling and blasting method of breaking a hard rock. (b) Explain: (c) handling misfire of explosives; (i) (6 marks) storing explosives. (ii) (4 marks) Distinguish between inlier and outlier. 6. (a) (4 marks) Discuss the term time-scale as used in geology. (b) Map 3 shows the plan of a geological map. (c) determine the gradient of the beds; (i)
 - (ii) draw a geological section along Y-Z to show the layers A, B, C, D and E;
 - (iii) on the geological section, indicate an inlier and outlier. (12 marks)

4 10 mm

7

2705/202 2707/202 June/July 2017 2709/202 2710/202

MAP3

2705/202 2707/202

2709/202 2710/202

June/July 2017

17 AUS 2017

Turn over

SECTION C: CONCRETE TECHNOLOGI ...

Answer ONE question from this section.

- 7. (a) State four factors that affect the productivity of concreting plants. (4 marks)
 - (b) Describe the following types of concreting plants:
 - (i) trucker mixer;
 - (ii) central mixing plant.

(10 marks)

- (c) State three precautions to be observed when:
 - (i) using a hoist as a lifting appliance;
 - (ii) transporting wet concrete.

(6 marks)

8. (a) State four factors that influence the selection of concreting plant.

(4 marks)

- (b) Determine the quantity of materials required per batch and probable output from a concrete mixing plant of 1200 litres capacity. The design per 1000 litres of mixed concrete is as follows:
 - I 5.6 bags of cement;
 - II 923 kg of coarse aggregates;
 - III 715 kg of sand;
 - IV 195 litres of water;
 - V fixing time = 115 seconds.

(16 marks)

THIS IS THE LAST PRINTED PAGE.

2705/202 2707/202 June/July 2017

2709/202 2710/202 6