- 1. (a) Given the matrices $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 3 & -4 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 & 2 & 3 \\ -6 & 1 & -2 \end{bmatrix}$, determine $(BA)^T$. (4 marks)
 - (b) Find the inverse of the matrix

$$= \begin{bmatrix} 1 & 2 & 5 \\ 3 & 1 & 4 \\ 1 & 1 & 2 \end{bmatrix}. \tag{7 marks}$$

(c) Current I₁, I₂ and I₃ in an electrical circuit satisfy the simultaneous equations:

$$I_1 + I_2 + I_3 = 6$$

 $I_1 - 2I_2 + 2I_3 = 5$
 $3I_1 + I_2 + I_3 = 8$

Use Cramer's rule to determine the values of the currents. (9 marks)

- 2. (a) Write down the middle term in the binomial expansion of $(3x + 2y)^{10}$, and determine its value when $x = \frac{1}{4}$ and $= \frac{1}{9}$. (7 marks)
 - (b) Use the binomial theorem to determine the value of $\frac{1}{(1.02)^2}$ correct to four decimals. (5 marks)
 - (c) (i) Find the first **four** terms in the binomial expansion of $(1 8x)^{\frac{1}{2}}$ in ascending powers of x.
 - (ii) By substituting $x = \frac{1}{100}$ in the result in (i) above, determine the value of $\sqrt{23}$ correct to four places of decimals. (8 marks)
- 3. (a) Determine the values of a, b and c such that $3x^2 4x + 6 = a(x+b)^2 + c$. (7 marks)
 - (b) The sag l metres in a cable stretched between two supports, distance x meters apart, is given by $l = \frac{12}{x} + x$. Determine the distance between the supports when the sag is 20 metres. (5 marks)

(c) Use the method of elimination to determine the currents I_1 and I_2 flowing in the d.c. network of figure 1. (8 marks)

Fig.1

- 4. (a) Prove the identities:
 - (i) $\tan A + \cot A = 2 \csc 2A$;

(ii)
$$\frac{Cos B + Cos C}{Sin B - Sin C} = Cot \left(\frac{B - C}{2}\right).$$
 (6 marks)

- (b) (i) Express $\sin 3\theta$ in terms of powers of $\sin \theta$.
 - (ii) By setting $\theta = \frac{\pi}{3}$ in the result in (i), determine the value of $\sin(\frac{\pi}{3})$ without using a calculator, giving the answer in surd form. (8 marks)

Solve the equation $\cos \theta + \cos 3\theta + \cos 5\theta = 0$ for values of θ from 0° to 180° inclusive.

5. (a) Given that
$$y = \sin x$$
, find $\frac{\delta y}{\delta x}$ from first principles. (5 marks)

(b) Find the first derivative of the function
$$f(x) = \sin(\frac{x-2}{x+3})$$
. (6 marks)

- (c) Locate the stationary points of the function $f(x) = x^3 + 3x^2 9x + 1$, and determine their nature. (9 marks)
- 6. (a) Evaluate the integrals:

(i)
$$\int_0^{\sqrt{2}} (3\sin 2x + 2\cos x - 3)\delta x;$$

(ii)
$$\int_0^1 \left(\frac{1}{\sqrt{x}} + x^2 - \frac{1}{x^{-\frac{3}{2}}}\right) \delta x$$
.

(7 marks)

1521/203 1522/203 1601/203 1602/203

- (b) Sketch the region bounded by the curve $y = x^2$ and the straight line y = 2 x, and find the area of the region. (7 marks)
- (c) Use implicit differentiation to find the equation of the tangent to the curve:

$$x^2 + y^2 + 3xy - 2x - 3y + 6$$
 at the point (1,1). (6 marks)

- 7. (a) Find the angle between the vectors $\underline{A} = 2\underline{i} 3\underline{j} + 5\underline{k}$ and $\underline{B} = -4\underline{i} + 7\underline{j} 8\underline{k}$. (7 marks)
 - (b) Determine the value of the scalar a, given that the three vectors, A = 2i + 6j + akB = 4i + 5j - 6k and C = -2i + j + 8k are coplanar. (7 marks)
 - (c) Given the scalar field $\phi(x,y,z) = x^2y + zx + 3y^2$, determine at point (1,2,1) the:
 - (i) Grad ϕ ;
 - (ii) directional derivative of ϕ in the direction of the vector $\underline{A} = 2\underline{i} 3\underline{j} + \underline{k}$.

 (6 marks)

8. (a) Given
$$u(x,y) = x^2 - y^2 + 3x$$
, show that $\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta^{-2}} = 0$. (4 marks)

- (b) Locate the stationary points of the function $z = x^2 + 3xy + y^2 2x 3y + 10$, and determine their nature. (10 marks)
- (c) Express sinh x in logarithmic form, and hence determine the value of sinh 2, correct to three significant figures. (6 marks)