SECTION A: APPLIED SCIENCE

Answer ONE question from this section.

1.	(a)	State four	types o	of optical	instruments.
----	-----	------------	---------	------------	--------------

(4 marks)

- (b) (i) Differentiate between 'compound' and 'mixture'.
 - (ii) Explain two types of chemical bonds in the structure of Ammonium ion.

(8 marks)

- (c) (i) Define the term 'pressure'.
 - (ii) The level of water in a storage tank is 1.8 m. If the density of the water is 1.1 g/cm³, determine the pressure at the bottom of the tank. (Take g = 10 N/kg and atmospheric pressure, $P_{atm} = 100,500 \text{ N/m}^2$).

(8 marks)

- 2. (a) State two factors that contribute to loss of efficiency in a pulley system. (i)
 - (ii) A block and tackle system has a velocity ratio of 4 and an efficiency of 85%. The machine is used to lift a load of 1200 N.

Determine the:

- (I) mechanical advantage;
- (II)effort applied.

(8 marks)

(b) With the aid of a labelled diagram, explain the term 'eletromagnetic spectrum'.

(5 marks)

- Define the term 'heat capacity'. (c) (i)
 - A cylindrical metal block of mass 0.5 kg is heated electrically by a 45 W (ii) heater for 10 minutes. The temperature of the metal block rises from 20 °C to 85 °C during this period. Determine its specific heat capacity.

(7 marks)

ex 5.4 N = 1200N x'e

SECTION B: ELECTRICAL PRINCIPLES

Answer any TWO questions from this section.

- 3. (a) State:
 - (i) **two** factors that affect the resistance of a conductor;
 - (ii) Kirchoff's laws

(6 marks)

(b) Figure 1 shows a d.c electric circuit. Using Kirchoff's laws, determine the branch currents. (10 marks)

Fig. 1

- (c) Explain the following terms as used in chemical cells:
 - (i) polarization;
 - (ii) local action.

(4 marks)

(8 marks)

- 4. (a) (i) Define the term 'farad' as used in electrostatics.
 - (ii) Figure 2 shows two capacitors connected in series. Show that the voltage across C_1 is given by $V_1 = V\left(\frac{C_2}{C_1 + C_2}\right)$ volts.

Fig. 2

- (b) Figure 3 shows an electrical circuit. Determine the:
 - (i) total equivalent capacitance;
 - (ii) total charge;
 - (iii) voltage across capacitor C₃;
 - (iv) energy stored in capacitor C₂

(8 marks)

Fig. 3

- (c) A two parallel plate capacitor has plates measuring 20 cm x 20 cm spaced 5 mm apart and carry a charge of 0.2 μ C. The voltage between the plates is 250 V d.c. Determine the:
 - (i) electric flux density;
 - (ii) electric field strength.

(4 marks)

- 5. (a) State:
 - (i) Lenz's law;
 - (ii) four factors that determine the force acting on a current conductor in a magnetic field.

(6 marks)

- (b) Figure 4 shows conductors carrying current in a magnetic system. Determine the:
 - (i) polarity of the magnets in figure 4(a);
 - (ii) direction of force on the conductor in figure 4(b)

(4 marks)

Fig. 4 (a)

Fig. 4 (b)

- (c) With the aid of diagrams, distinguish between a shell type and core type transformer.

 (4 marks)
- (d) (i) Explain **two** types of iron losses in transformers.
 - (ii) A 400 kVA single phase transformer has a full-load copper loss of 2.5 kW and iron loss of 2 kW.

 Determine the efficiency at full load and 0.85 power factor. (6 marks)

SECTION C: ELECTRONICS

Answer any TWO questions from this section.

- 6. (a) (i) State three classifications of materials.
 - (ii) Differentiate between intrinsic and extrinsic semiconductors. (7 marks)
 - (b) With aid of a diagram, explain the V/I characteristics of a P-N junction diode.

(7 marks)

- (c) (i) State **three** properties of an ideal operational amplifier.
 - (ii) With aid of a labelled diagram, show the connection of biasing voltages of a PNP transistor. (6 marks)

1601/102 1602/102

- 7. (a) State the reason for the application of voltage regulators in d.c power supplies.
 - (ii) Sketch a block diagram of a stabilised d.c power supply.

(6 marks)

(b) Figure 5 shows a Zener diode stabilizer circuit. Determine the output voltage with no load current. (7 marks)

- (c) State **three** advantages of negative feedback in amplifiers.
 - (ii) In a negative feedback amplifier, the gain A = 100, $\beta = 0.05$. Determine the gain with feedback.

(7 marks)

8. (a) Covert the hexadecimal number F8E6 to the corresponding decimal number.

(3 marks)

(b) State **three** types of logical families.

(3 marks)

- (c) With aid of a schematic diagram, explain the operation of a capacitive transducer.

 (6 marks)
- (d) (i) Draw clocked S-R flip-flop using NAND gates.
 - (ii) Write the truth table for the flip flop in d(i).

(8 marks)

THIS IS THE LAST PRINTED PAGE.