1521/103 1601/103 1522/103 1602/103 MATHEMATICS I Oct./Nov. 2017

Time: 3 hours

scannel

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION)

MODULE I

MATHEMATICS I

3 bours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator.

This paper consists of EIGHT questions.

Answer any FIVE questions in the answer booklet provided.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2017 The Kenya National Examinations Council

Turn over

Evaluate the expression:

$$\frac{2}{3} \left(\frac{1 \div \frac{1}{5} \text{ of } \frac{3}{4}}{\frac{4}{5} + \frac{1}{3} - \frac{1}{4}} \right)$$

(4 marks)

- Given the numbers 18, 36 and 48, find the: _ (b)
 - (i) L.C.M;

(5 marks)

- Three bells ring at regular intervals of 15, 30 and 45 minutes. On a certain day, they (c) rang simultaneously at 0700 hours. Determine the next time that they all rang together. (6 marks)
- (d) Convert the recurring decimal 1.7 to an improper fraction.

(5 marks)

2. (a) Evaluate:

(i)
$$\frac{Log 16 - Log 64 + \frac{1}{2} Log 128}{2 Log 4} \frac{Log 2^4 - Log 2^6 + \frac{1}{2} Log 2^7}{2 Log 4}$$
(4 marks)
$$\frac{4 \log 2 - 6 \log 2 + 3 \cdot 5 \log 2 = 1 \cdot 5 \log_2}{3^2 \times 243^{\frac{1}{6}}}$$
(4 marks)

(ii)
$$\frac{9^{\frac{3}{2}} \times 27^{\frac{1}{2}}}{3^2 \times 243^{\frac{3}{2}}}$$
 (4 marks)

- (b) Solve the equations:

(ii)
$$Log_3(x+2) + Log_39 = 3$$

(6 marks)

- (c) Convert:
 - (i) 11001101.101₂ to denary;

(ii)
$$36_{10}$$
 to binary.

(6 marks)

3. (a) If
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 3 \\ 5 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} -6 & 2 \\ 4 & 1 \end{pmatrix}$

Find:

- A+B+C; (i)
- (ii) det B;
- (iii) C^{-1} ;
- (iv) ABC.

(11 marks)

(b) Two currents I₁ and I₂ in amperes flowing in a simple electrical circuit satisfy the equations:

$$2I_1 + 3I_2 = 13$$

$$5I_1 - 2I_2 = 4$$

Use the inverse matrix method to solve the equations.

(9 marks)

- 4. (a) The 6th and 10th terms of an arithmetic progression are 18 and 30 respectively. Determine the:
 - (i) common difference;
 - (ii) first term;
 - (iii) sum of the first 18 terms.

(8 marks)

- (b) The sum of the 4th and 6th terms of a geometric progression is 80. If the product of the 3rd and 5th terms is 256, determine the:
 - (i) first term;
 - (ii) common ratio;
 - (iii) sum of the first eight terms.

(12 marks)

5. (a) Given the data:

Find the;

- (i) mode; 30
- (ii) median. QS, 30, 30, A2, SA 62

(4 marks)

30142 = 36

(b) Table 1 shows the frequency distribution of scores obtained by 40 students in a practical test.

Table 1

Scores (%)	55-60	60-65	65-70	70-75	75-80	80-85	85-90
Number of students	2	4	9	15	6	3	1

Determine the:

- (i) mean using an assumed mean of 72.5;
- (ii) median marks;
- (iii) standard deviation of the distribution.

(16 marks)

3 (3+1,0) (0)

1521/103 1522/103 1601/103 1602/103 3

Turn over

Oct JNov. 2017

6. (a) Simplify, giving the answer with positive intergers.

$$\frac{\left(8x^4y^{\frac{3}{2}}\right)6(z^{\frac{2}{5}})}{16x^6y^{\frac{1}{4}}z^{-\frac{1}{5}}}$$

(3 marks)

(b) (i) Without using tables or calculator. Evaluate:

$$(2Log_4256) \times (Log_6261)$$

(ii) Solve the equation:

$$9^{2x+3} = 27^{x+1}$$

(7 marks)

- (c) Solve the equation:
 - (i) $Log_3(x+2) + Log_3 9 = 4$
 - (ii) $Log_x 27 = Log_2 8$

(7 marks)

- (d) A geometric progression is such that the second term is 16 and the fourth term is 256.

 Determine the common ratio. (3 marks)
- 7. (a) Given that $12\frac{1}{2}$, x, y, z, $20\frac{1}{2}$ sequence form an arithmetic progression, determine the values of x, y, and z. (5 marks)
 - (b) Given the matrix:

$$A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$
, show that $A^2 - 5A + 6I = 0$ (5 marks)

(c) Figure 1 shows a d.c electric network.

Fig. 1

Use cramer's rule to determine the currents I_1 and I_2 .

(10 marks)

8. Table 2 shows the frequency distribution of the floor area of houses in an estate in square metres.

Table 2

Floor area (m²)	Frequency (f)		
2 - 4	2		
4 - 6	3		
6-8	7		
8 - 10	13		
10 - 12	16		
12 - 14	12		
14 - 16	8		
16 - 18	6		
18 - 20	3		

Determine the:

- (i) mean;
- (ii) mode;
- (iii) semi interquartile range;
- (iv) standard deviation of the distribution.

(20 marks)

THIS IS THE LAST PRINTED PAGE.

1521/103 1601/103 1522/103 1602/103

5

Oct/Nov. 2017